
Analysis of input and output configurations for use
in four-valued CCD programmable logic arrays

J.T. Butler
H.G. Kerkhoff

Indexing terms: Logic, Circuit theory and design, charge-coupled devices

Abstract: As in binary, a multiple-valued pro-
grammable logic array (PLA) realises a sum-of-
products expression specified by the user.
However, in multiple-valued logic, there are many
more operations than in binary, and an important
question is the choice of operations which pro-
vides the greatest number of functions for a given
chip area. In this paper, we analyse various PLA
configurations using operations realised in the
peristaltic multiple-valued CCD technology. We
compare a multiple-valued CCD PLA implemen-
tation with four other proposed designs and show
that there is a significant difference in chip area
required to realise the same set of functions. The
basis of comparison is the set of 4-valued unary
functions.

1 Introduction

In binary logic, an important circuit is the programmable
logic array or PLA. Its widespread use is due to a flex-
ibility which allows the user to specify complex com-
binatorial functions. Recently, PLAs have been suggested
for multiple-valued systems [2-7]. It is likely that the
advantages of the PLA will make it an important element
in this domain as well. However, the wider choice of
operations associated with a radix larger than 2, makes
the determination of which PLA configuration to offer
the user more difficult than in binary. Two PLA configu-
rations were studied in Bender et al. [6], where it was
shown that the use of the Sum operation at the second
PLA level produces more economical realisations than
with the Max operation over two classes of functions.
However, the question of which operations are best
suited for general multiple-valued functions remains
open.

An implementation of a PLA in a radix higher than 2
is described in Kerkhoff and Butler [7]. The PLA is fab-
ricated in CCD or charge-coupled device technology, and
is the first implementation of a multiple-valued PLA, not
only in CCD, but in any technology. The design is radix
independent. That is, no primary circuit changes are
required to accommodate changes in radix. Only voltage

Paper 5443E(C2), first received 10th December 1985 and in revised form
23rd October 1986
J.T. Butler is with the Department of Electrical and Computer Engin-
eering, Naval Postgraduate School, Monterey, CA 93943-5100, USA
H.G. Kerkhoff is with the IC-Technology and Electronics Group,
Department of Electrical Engineering, Twente University of Tech-
nology, 75OOAE Enschede, The Netherlands

values applied to the circuits need to be modified. This
PLA is also the first multiple-valued peristaltic CCD. All
previous multiple-valued CCD circuits have been surface-
channel CCD. Because peristaltic CCD has a lower
charge-transfer time, there is a correspondingly higher
speed.

The focus in Reference 7 is the implementation of a
multiple-valued PLA with an emphasis on device and
circuit considerations. In this paper, we consider the logic
design of the multiple-valued PLAs. We examine the
question of what PLA configuration provides the greatest
logic capability. The implementation of the PLA in Ref-
erence 7 is based on the Allen-Givone algebra [8] with
the Max operation replaced by the Sum (Tirumalai and
Butler [2]). It requires a circuit which implements the
literal operator. In the implementation of Reference 7, the
literal is realised by a pair of subcircuits, one realising the
staircase-up and the other the staircase-down function.
However, certain literal functions can be realised using
only one staircase function, suggesting that more area-
efficient PLAs can be built using staircase-function gener-
ators instead of literal-function generators. This intuitive
notion is quantified in this paper. Specifically, we show
that there is a significant reduction in chip area when
such a substitution is made. Our analysis includes a total
of five PLA designs, and we show that the design
described in Reference 7 ranks midway (3rd out of 5)
using the chip-area criteria.

All previously implemented CCD circuits have been in
4 values. This includes the peristaltic CCD implementa-
tion of Reference 7, although it is expected to work with
more values, perhaps 6. Because our analysis requires the
use of a specific radix, we choose radix 4.

In the next Section, we introduce the CCD logic oper-
ations, and in Section 3, we analyse the various PLA con-
figurations with respect to the functions realised. A
summary of results is given in Section 4.

2 CCD logic operations

2.1 Constant
Fig. 1 shows the four basic CCD operations used in the
peristaltic CCD PLAs described here. The first three
operations have been fabricated in surface-channel CCD
technology (Kerkhoff [1]) in the same way as in peristaltic
technology, while the last operation, Sum, has been rea-
lised in surface-channel CCD in a different form than
shown here.

Fig. la shows a constant logic-value generator. The
square on the left containing a black bar represents a
source of charge which flows at the clock pulse into a
charge well represented by the square labelled p. p is the

168 IEE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1986 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
Analysis of input and output configurations for use in four-valued CCD
programmable logic arrays

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
As in binary, a multiple-valued programmable logic array (PLA) realises a sum-ofproducts expression
specified by the user. However, in multiple-valued logic, there are many more operations than in binary,
and an important question is the choice of operations which provides the greatest number of functions for
a given chip area. In this paper, we analyse various PLA configurations using operations realised in the
peristaltic multiple-valued CCD technology. We compare a multiple-valued CCD PLA implementation
with four other proposed designs and show that there is a significant difference in chip area required to
realise the same set of functions. The basis of comparison is the set of 4-valued unary functions.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

capacity of the well. The charge source fills the well com-
pletely, producing a quantity of charge equal to a logic p.
The black bar to the right of this well is a clocked trans-
fer gate, which transfers the well contents to the right and
out of the constant generator. For example, if the well
capacity is a logic 1, p = 1, and the constant generator
produces a logic 1 at its output.

Ill p I- -H0D

i±
Fig. 1 Basic CCD operations
a Constant (cost = I)
b Multithreshold (cost = 4)
c Inhibit (cost = 18)
d Metal summer (cost = 2)

2.2 Multithreshold
Fig. \b shows a multithreshold or fixed-overflow circuit.
At the clock pulse, the input charge at x is transferred
into the well labelled p. If this charge exceeds the well
capacity p, the excess flows right and into the next well.
This has a capacity of logic 3, as indicated by the three
corner braces. At the next clock pulse, the contents of this
well are transferred out across the clocked transfer gate,
represented by the vertical black bar, becoming the
multithreshold output. The multithreshold circuit pro-
duces x — p at the output if x > p and 0 otherwise.

2.3 Inhibit
The inhibit circuit is shown in Fig. \c. It has two inputs,
a primary input x and a control input y. When a logic 0
appears at y, the logic value at the primary input x flows
into the well labelled p. When the control input has a
nonzero logic value, this flow is blocked, and a logic 0
appears at the inhibit output at the right. For y = 0, x
passes to the output if x ^ p and p passes to the output
when x > p. Thus, the inhibit acts as a switch. The inhibit
shown in Fig. \c is a simplified version of that introduced
in Reference 1 for surface-channel CCDs, where there is
another output which is x when y > 0.

2.4 Sum
Fig. \d shows the Sum operation. The metal line stores
the charge which is dumped from inputs x and y at the
clock pulse. The charge adds, creating a voltage which is
proportional to the total charge. In the PLA configu-
ration described below, the metal summers are the PLA
columns. In the surface-channel CCD implementations
[1], the Sum operation is performed in a well rather than
a metal line.

2.5 Cost factors
The above four CCD operations are used in the PLA
configurations to be described later. To compare configu-
rations, we use relative cost factors of CCD operations,
specifically those proposed in Reference 1. This cost is
primarily a measure of the chip area occupied by the
operation. For example, the constant generator requires
much less chip area than the inhibit, and thus has a cor-

respondingly smaller relative cost. Other factors which
determine the cost are the number of different power-
supply and data lines, as well as the sensitivity of the
realised function to process and voltage variations. The
costs are integers and are shown in Fig. 1.

3 Analysis of realised functions

3.1 PLA components
In this section, we analyse the functions realised by the
proposed PLA designs. The PLA structure has two basic
components:

(a) input configurations — logic required between
primary PLA inputs and the PLA columns

(b) output configurations — logic required between the
PLA columns and the PLA output.

Two input configurations, staircase and step, and two
output configurations, complement and inhibit, will be
considered. Taken together, there are 4 combinations.
These are compared to the configuration combination
used in the multiple-valued PLA implementation of Ref-
erence 7, which consists of a literal-function input con-
figuration and an inhibit output configuration. Thus, the
five combinations are

Input
configuration

(i) staircase functions
(ii) staircase functions

(iii) step functions
(iv) step functions
(v) literal functions

3.2 Input configurations

Output
configuration

complement or direct
inhibit or direct
complement or direct
inhibit or direct
inhibit always [7]

3.2.1 Staircase-function generator: The first type of
input configuration is shown in Fig. 2a. It consists of a

constant
generator^

x 1

3-y

y-o-|

——*.

I
a

metal sum

II
II

b

P 1
1
1

me

i
i

>r
3

2
X

0

3

"" 1
—

0

, r
4-4-

i .
1 2 3

X

1 2 3
y

a=0

a= I

a = 2

b=0

b=l

b=2

Fig. 2 PLA input configuration: staircase-function generator

fixed overflow driven by a primary input x. The fixed
overflow has one well with a programmable capacity
given by the value of the lower-case letter in the well and
another well which collects the overflow. At a clock
pulse, the contents of this latter well are applied to a
metal summer, which corresponds to one column of the
PLA. Fig. 2a shows two input configurations. In the top
configuration, x is applied as the input to the fixed over-
flow. In the one below, the complement of y, 3 — y, is
applied. Implementation of the complement is straight-
forward. It is obtained by interchanging the connections
to electrodes on the CCD substrate of the device which
realises the circuit shown above it (p. 30, Reference 1).
Fig. 2b shows that the function realised by each input

IEE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987 169

configuration is a staircase function in which the
maximum logic value depends on the capacity of the
programmable well. In specifying the PLA function, the
user chooses whether the input is complemented or not.
This determines whether a staircase-down or staircase-up
function, respectively, is produced.

Also shown in Fig. 2a is a constant generator in which
the output is applied to the metal summer. Thus, the
output of the metal summer is the sum of staircase func-
tions and possibly a constant. The value of the constant
is determined by the user, and there is exactly one con-
stant generator for each PLA column.

3.2.2 Step-function generator: Fig. 3a shows a more
complex PLA input configuration. As in the previous

constant
generator

metal summer

b

a

II
II

ri
1DHI
IS El

0 1 2 3
X

I I

I I

»-» 3
>>

• - 2

I

0 1 2 3

Fig. 3 PLA input configuration: step-function generator

configuration, the input or its complement drives a fixed-
overflow circuit. However, in this case, the output well
drives the sense input of an inhibit circuit which, in turn,
produces the input to the metal summer. For example, in
the input configuration driven by x, if x ^ b, all of the
input charge resides in the well labelled b and none flows
to the overflow well. Since there is no charge there, the
flow of charge from the source well of the inhibit is not
blocked, and the well labelled d fills to its capacity d. The
metal summer, in this case, receives a logic d. Fig. 3b
shows that the functions realised are step functions in
which the height and transition point are determined by
well capacities d and b, respectively. If the input is
applied uncomplemented, a step-down function is gener-
ated, while a complemented input produces a step-up
function.

Also shown in Fig. 3a is a constant generator, which is
applied to the metal summer. Thus, the metal-summer
output is the sum of step functions and a constant. As in
the case of the staircase-function generator, the value of
the constant is programmable and there is one constant
generator per column.

3.2.3 Literal generator: The literal function in 4-valued
logic [8] is the unary function

= 0

if ak^xk

otherwise

Any multiple-valued logic function f(xu x2, . . . , xn) can
be realised as a sum-of-products:

, ..., Xn) — 2_,
u = l

where a • b = min(a, b), £ is a truncated (to 3) arithmetic
sum, pu e {1, 2, 3}, and q is the number of product terms
[2].

The realisation of the literal function can be achieved
using two copies of the staircase-function generator, one
with a direct input and the other with a complemented
input. The pair is called a literal generator, and is shown
in Fig. 4. The output function is the sum of an increasing
and a decreasing staircase function. If the two nonzero
parts of the function do not overlap, the resulting sum is
0 for a range of values of x. As it happens, this range
corresponds to the range of values of xk, ak ^ xk ^ bk,
where the literal function is 3. A literal generator is used
with an inhibit circuit at the column output to produce
the product term in the summation of eqn. 1. The process
by which this is accomplished will be explained later.

3.2.4 Costs of input configurations: The basis on
which we compare the various PLAs is the relative cost

metal summer

a
7 N I

I
I I

I I

Fig. 4 PLA input configuration: literal generator

factor described in Section 2. The cost for each input con-
figuration is the sum of the costs of the component oper-
ators. As mentioned previously, the cost is primarily a
measure of the chip area occupied.

The staircase-function generator consists of a multi-
threshold operator with a cost of 4. Since com-
plementation is obtained so inexpensively, the
staircase-function generator is viewed as having the same
cost, regardless of whether or not the complementer is
present. The step-function generator consists of one fixed
overflow and one inhibit and has a total cost of 22. The
literal generator consists of two copies of the staircase-
function generator and has a cost of 8.

3.3 Output configurations

3.3.1 Complement: Fig. 5a shows the complement
circuit at the output of the PLA column. This circuit rea-
lises 3 — y, where y is the input and — is ordinary sub-
traction. The complement can be realised with a fixed
overflow, inhibits, constant generators, and an adder [1].
The dotted line in Fig. 5a shows that the metal summer
from the input configurations can be used to directly
drive the PLA metal summer. Thus, the user can choose
the sum of input functions either directly or after it has
been applied to a complement. Also, Fig. 5a shows a con-
stant generator, which can supply a constant to be
summed at the PLA output. This is p, the capacity of the
constant-generator output well, a parameter which can
be specified by the user.

3.3.2 Inhibit: In Fig. 5b, the inhibit circuit is used at the
column output. The output of the inhibit is either 0 or/ ,
where / is the capacity of the inhibit output well. 0 is
produced when the input from the summer is any
nonzero value, and / i s produced when the input is O./is

170 1EE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987

determined by the PLA user. As with the complement,
the user has a choice, as indicated by the dotted arrow, of
connecting the PLA column directly to the PLA-output
metal summer or to the sense input of the inhibit.

from unary
function generators

constant
generator

(ZZI
complement

y

3-y

from unary
function generators

constant
generator

0 •
PLA

output

PLA
output"

Fig. 5 Two PLA output configurations

a Complement
h Inhibit

3.4 Unary 4-valued functions realised at the output
of one PLA column

We now consider the merits of the above configurations
by analysing the functions produced by each. As a basis
of comparison, we consider the set of all unary 4-valued
functions and determine the minimum number of input
configurations needed to realise each. Our criteria for
comparison is the total number of configurations needed
for all unary functions. In all but one of the PLA configu-
rations presented, we assume that the user can apply any
input to as many input configurations as needed. Thus,
unlike conventional PLAs, an input variable may occur
in more than one row. The one exception is the literal
generator, where we allow only one occurrence of any
variable, a restriction which has applied in past studies.

In the analysis which follows, it will be convenient to
represent a unary 4-valued function/(x) as a four-tuple
<^aoala2a3y, where a{ =/(/), for 0 ^ i ^ 3.

3.4.1 Staircase-function generator with a complement
or direct connection to the column output (i): A unary
function <a0 ala1a^) is constant if a0 = al = a2 = a3. A
unary function (aoala2a3y is increasing (decreasing) if
a . - i ^ a , («,-_! ^fl,-) for 1 ^ / ^ 3. A unary function
(aoa1a2a3) is a K-function if there exists an integer m
such that fl,_! ^ ah for all 1 ^ i ^ m and a} ^aj+i, for
all m ^ j ^ 2, where 1 ^ m ^ 2. For example, <2201> is a
K-function, and < 1111 > is a constant, increasing, decreas-
ing, and K-function.

There are six staircase functions, <0123>, <0012>,
<0001>, <3210>, <2100>, and <1000>. The sum of two or
more staircase functions or constant functions, is a V-
function. The sum of two staircase functions can be a
K-function which is neither increasing nor decreasing, e.g.
<2101> = <2100> + <0001>. A complete characterisation
of the functions realised is given in Reference 7. For com-
pleteness, we describe this briefly below. Fig. 6 below
shows the whole or partial K-functions obtained by
summing whole or partial staircase or constant functions.
The three triangles along the top represent complete
increasing functions. For example, <0233> is the sum of
<0123> and <0123>. The second and third row represent
partial sums of increasing functions where the values
associated with x = 0 and 0 < x < 1, respectively, are
missing. The integer along the side represents the number

IEE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987

of staircase functions used to obtain the representations
listed just below the triangle. Note that this value is the
maximum of the difference between any two adjacent

0 3 3 3

2 3 3 1 3 3

A A
0 1
1 2

2 3

0 2
1 3

0 3

Fig. 6 Whole or partial sums of staircase and constant functions

logic values. This observation will be useful later in
counting the number of staircase functions used in spe-
cific realisations. By symmetry, there is a set of partial
and whole decreasing functions which have the same rep-
resentations as in Fig. 6 except for the rotation about the
vertical axis. Any function which is the sum of staircase
or constant functions is a combination of the functions in
Fig. 6 or their reverses.

Table 1 shows all possible combinations of staircase
and constant functions plus complements of such com-
binations. There are five columns corresponding to the
values of x for which /(x) is minimum. Shown in the
heading of the column is the form of the realised func-
tions using representations appearing in Fig. 6. The
second column from the left shows the constant func-
tions, the next three show increasing and decreasing func-
tions which are not constant functions, and the next two
columns show K-functions which are neither increasing
nor decreasing. The entries show how many functions are
realised as the sum of s staircase functions and possibly
one constant function, with the value of s shown in the
extreme left-hand column. For example, <1012>,
which is the sum of two staircase functions is counted in
the entry '3' of the column corresponding to a function-
value minimum located at m = 1 (4th column from the
right) and in the row corresponding to s = 2. The other
two functions counted are <2123> = < 1111 > + <1000>
+ <0012> and <3233> = <2222> + <1000> + <0012>.
The '(3)' beside the '3' corresponds to the 3 functions
which are the reverse of the functions counted in the '3',
i.e. <2101>, <3212>, and <3323>. For each column, the
function-value minima are listed at the heading, with
paranthesised function values corresponding to parenth-
esised entries in the table.

The second column from the right in Table 1 shows
the total number of functions realised as the sum of s
staircase functions and possibly one constant function.
There are 4 functions for which s = 0, the constant func-
tions. There are 18 functions which are the sum of stair-
case functions exclusively. These are either increasing or
decreasing functions. At the other extreme, there are

171

Table 1: Functions realised as the sum of staircase functions and functions which
are the complement of such sums (0 and 1 Column PLAs)

P(s) Q(s)

0

1

2

3

4

5

6

4

0

0

0

0

0

0

0

3(3)

3(3)

1(1)

0

0

0

0

3(3)
[3(3)]

3(3)
[1(1)]

1(1)

0

0

0

0

3(3)
[2(2)]

2(2)
[1(1)]

1(1)

0

0

0

Number of functions realised without complement

Number of extra functions realised with complement

0

0

3(3)
[5(5)]

5(5)
[6(6)]

5(5)
[6(6)]

3(3)
[3(3)]

1(1)
[1(D]

0

0

3
[3]

4
[4]

4
[4]

2
[2]

1
[1]

4

18

25

20

14

8

3

92

[0]

[10]

[IZ]

[16]

[16]

[8]

[3]

[70]

m - value of x for which f(x) is minimum
s = number of staircase functions used in the realisations
P(s) = number of functions requiring s staircase functions
Q(s) = number of functions requiring s staircase functions

Underlined entries contain functions requiring a nonzero
summer in its minimal realisation

(without complement)
(with complement)

constant applied to the output metal

three functions which are the sum of 6 staircase functions.
These are <3033>, <3OO3>, and <33O3>. Summing more
than 6 staircase functions yields no additional functions.

It should be noted that only minimal realisations are
counted in Table 1. For example, while <3213> can be
realised as the sum of 4 staircase functions, < 3210 > ,
<0001>, <0001>, and <0001>, a minimal realisation
requires only 3 staircase functions and a constant,
<2100>, <0001>, <0001>, and <1111>. Thus, <3213> is
counted among the 5 functions in the entry correspond-
ing to the column m = 2 and the row s = 3.

An examination of Fig. 6 and Table 1 shows that not
all K-functions are realised as the sum of staircase func-
tions. For example, <0223> is not included. The first two
logic values, 02, can only be realised as the sum of two
increasing functions <0123> and <0123>. However, the
corresponding function would be <0233> not <0223>. In
fact, any K-function with 022 as a subpattern is not rea-
lisable. There are 5 other nonrealisable subpatterns.

Observation: Let f(x) = ^aoala2a2} be a unary 4-
valued function realised as the sum of staircase functions
and possibly a constant function, where/(x) is in the set
of K-functions not containing forbidden subpatterns 011,
110, 022, 220, 122, and 221. The minimum number of
staircase functions used to realise/(x) is

max (a,_x — a,) + max (aj+i — a j) 1 ^ / < m m ^ j' ^ 2

where m is a value of x for which/(x) is minimum.

The minimum number of staircase functions required to
form a given realisable K-function is the sum of the
maximum difference between adjacent logic values along

the decreasing part of the function and along the increas-
ing part. This follows from an earlier observation on
partial staircase functions.

If we allow complementation at the output of a metal
summer, then additional functions can be realised. For
example, any K-function that is neither increasing nor
decreasing, produces an inverted K-function which is
neither increasing nor decreasing when complemented.
Such a function is not the sum of staircase functions. In
Table 1 the number of functions realised using the com-
plement is indicated by brackets [] . Thus, in the two
columns corresponding to K-functions which are neither
increasing nor decreasing, some entries of the form i(i) or
i are repeated in brackets, [i(iy\ or [i], respectively.

Complements of increasing (decreasing) functions are
decteasing (increasing) functions. The only additional
functions generated by complementing such functions are
those which contain a forbidden subpattern, 011, 110,
022, 220, 122, and 221. Table 1 shows there are, in all, 10
such functions. For example, <0111> contains a for-
bidden subpattern, and thus is not the sum of staircase
functions and possibly a constant. However, <0111> is
the complement of <3222>, which is a decreasing function
realisable as the sum of a single staircase function <1000>
and the constant <2222>. Thus, <0111> is an additional
function only realisable because of the complement.

Table 1 shows that the total number of additional
functions obtained by using the complement is 70. This is
in addition to the 92 functions which are realised as the
sum of staircase functions and perhaps a constant func-
tion. The complement is necessary if all functions are to
be realised in a PLA using a staircase-function generator.
For example, <0100> is not realised as the sum of any

172 IEE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987

staircase functions, but it is realised as the complement of
such a sum (<1000> + <0012> + <2222». Thus, the func-
tion <0100> itself is not realisable unless the complement
is available. Any function on n variables is realisable pro-
vided that there are enough columns. This follows from
the fact that any product of a constant and literal func-
tions (a term in the summation of eqn. 1) can be realised
by an appropriate choice of staircase functions, at most 6
for each variable. For example, ixl is realised by
summing the six staircase functions <1000>, <1000>,
<1000>, <0001>, <0001>, and <0001> each with input xk.
pu of eqn. 1 is realised by choosing a constant to the
metal summer equal to 3 — pu.

The underlined entries in Table 1 correspond to func-
tions which require a nonzero value for the output of the
constant generator at the PLA output metal summer.
For example, one function counted in the entry [3, (3)] of
the fourth column (0 ^ m ^ 1, (2 ^ m ^ 3)) and the third
row (s = 1) is <1122>, with the realisation, <1122> =
<2100> + <2222> + <llll>. In all, there are 10 such
functions. The other 9 are

= <0012> + <2222>
= <0001> + <2100> + <2222> -
= <1000) + <0012) + <2222)-

<2232> = <0001> + <2100> + <2222> + <2222>
<2322> = <1000> + <0012> + <2222> + <2222>

= <2100> + <2100> + <0001> -
= <0012> + <0012> + <1000> -

Function Condition U(s) V(s)

c
c
c
A
A
A

A
c
c
A
A
c

A
A
c
A
c
c

A
A
A
c
c
c

A
0

= 3
<c < 1

12

A = 2
A

c
c
A
A

c
2 c

c

0

A
c
A
A

A
A
c

0

A
A
A
c

c
A
A

0

A
A 1 <>4 < 2
c 0 < c < A
c

c
c _ ~̂ ^ „0 ^ c <A
c

Number of functions improved with inhibit 14

Number of extra functions realised with inhibit

12

18

30

5 = number of staircase functions used in minimal realisation
U(s) = number of functions which are realised as a sum of staircase
functions without inhibit, but which are also realised with fewer
staircase functions using an inhibit
V{s)= number of functions requiring s staircase functions (with
inhibit)

output logic levels only. The entries correspond to the
^aoala2a3) notation for unary functions. For example,
the first row of the column headed by 'Function', c A A
A, corresponds to the unary function <ao

aia2a3> = (c A
A A}. The third column specifies the range of values for c
and A. For this function A = 3 and 0 ^ c < 1. Thus, c A
A A represents the two functions <0333> and <1333>. In
addition to the 92 functions which are sums of staircase
functions, the inhibit produces 30 additional functions,
less than one half the number of additional functions pro-
duced by the complement. However, unlike the com-
plement, the inhibit improves on the functions which are
the sum of staircase functions. For example, <0333> can
be realised as the sum of three staircase functions
«0333> = <0123> + <0123> + <0123», but requires
only one when the inhibit is used «0333> = inhibit
«1000»). There are altogether 14 functions which have a
better realisation when the inhibit is used.

3.4.3 Step-function generator with a complement or
direct connection to the column output {Hi): Table 3

= <2100> + <2100> + <0001> + <0001> +
= <0012> + <0012> + <1000> + <1000> +

The constant is necessary in the realisation of these func-
tions. Without it, they would be unrealisable in a one-
column PLA.

3.4.2 Staircase-function generator with an inhibit or
direct connection to the column output (ii): If an
inhibit is used instead of the complement at the PLA
column output, a different class of functions is realised.
The additional functions, shown in Table 2, produce two

Table 2: Functions realised as the sum of staircase func-
tions applied to an inhibit

+ (1111)

shows the functions realised by summing step functions
and constants. The function-entry notation is identical to
that of Table 2. Compared to the 18 realised by the sum
of one staircase function and possibly a constant func-
tion, there are 36 functions realised as the sum of one
step function and possibly a constant function.

It is interesting to note that the sum of more than 3
step functions and possibly a constant produces no more
functions than are realised by summing 3 or fewer func-
tions. Recall that for staircase functions, up to 6 may be
summed to produce a distinct function. In all, 156 func-
tions are realised as the sum of step functions, approx-
imately 50% more than the 92 realised as the sum of
staircase functions. However, the input configurations
required to realise the step function is more complex than
for the staircase function.

Also shown in Table 3 are functions which are com-
plements of the sums of step functions and possibly a
constant function. As with the noncomplemented func-
tions, the form of each realisation is given. Brackets []
are used to enclose the number of functions realised when
a complement is used. In all, 62 additional functions are
produced. Thus, the total number of functions realised by
the complement operation at the column output is 218
using step functions or 162 using staircase functions at
the input.

As with the staircase functions, the complement is
necessary in order to realise all functions. For example,
neither <0010> nor <0100> is realised as a sum of
step functions, but both are the complement of the
sum of 2 step functions and a constant (e.g. <0010> =
<33OO> + <0003> + <2222>). Given enough PLA
columns, any 4-valued function can be realised.

3.4.4 Step-function generator with an inhibit or direct
connection to the column output (iv): Table 3 also shows

1EE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987 173

Table 3: Functions realised as the sum of step functions and functions which are the complement or
inhibit of such sums (0 and 1 Column PLAs)

s

0

Function

A A A A

Condition

0^<3

R(s)

4

S(s) Us) R(s)

4

S(s)

0

T(s)

0

c
c

1 c
A
A
A

<A^3 36 36 [0] {0}

c
c
c
A+B
A+B
A+B

A
A
c
A+B
A
A

A+B
A
A
A
A
c

A+B
A+B
A+B
c
c
c

<A^2 24

A
A

2 A

A
A
A

c
c
c

c
c
A

c
~c~
A

A
A
c

B
c
c

oo
l

c
c

c
A
A

B
B
B

oo
l

B

00

c
c
c

0 <c <A, B s$ 3

same, except
c = 0:A+B < 3
c = '\:A-B=c

c = 0: 1 <>4 ^ 3
C - 1 . / A - 3

42

[30]

{12}

78 [30] {12}

A
A
A

A+B
A+B
A

B
A+B
A+B

B
B
B

12

0
A+B + C

C

A + B

C
A+B

3 A + B
C

A+B
C

A+B +c
C + c

A
A+B

c

A

c
A

B
B + C

B
B + C

~B +c
B + C + c

A +B
A

A

c

A
c

B + C
B

B + C
B

B + C + c
B+c

A +B + C
0

A+B

C

A+B
C

C
A+B

C
A+B

~C + c
A+B+c

A — B — /"" — 1— D — O — I

0<B<3-A

same, except

1
1 iBd222^A+B

same, except
A

A
c

=£=C=1

= C = 2, B = 1
= 1

2

22

12

[20]

[10]

[2]

38 [32] {0}

A+B
C

A + B + C A+C C
A+C A+B+C A+B

Number of functions realised without complement or inhibit

Number of extra functions realised with complement

Number of extra functions realised with inhibit

156

[62]

{12}

156

[62]

{12}

s = number of step functions used in the realisations
R{s) = number of functions requiring s step functions
S(s) = number of functions requiring s step functions (with complement)
T(s) = number of functions requiring s step functions (with inhibit)

the additional functions realised when an inhibit is used
at the output of the PLA column. The number of addi-
tional functions is 12, as shown in braces {}. Thus, the
inhibit produces about one fifth of the additional func-
tions produced by the complement. Again, any 4-valued
function can be realised using this combination of input
and output configurations.

3.4.5 Literal generator with an inhibit at the column
output and no constant generator {v): A literal generator
consists of two staircase-function generators, one with xfc

on the input well and the other with 3-xk. The function
produced at the PLA column is the arithmetic sum of a
staircase-up and a staircase-down function. If the two
functions are 0 for a range of xk, ak ̂ xk ^ bk, the sum is

0 for that range. Thus, if n copies of the literal generator
are applied to the summer column, each with xfc applied
at the input for 1 ̂ k < n, the column has 0 charge if and
only if each xfc is bounded as ak ̂ xfc ̂ bk.

With an inhibit at the column output, the inhibit
output will be / , the logic capacity of the inhibit output
well, if and only if ak ̂ xfc ̂ bk for all 1 ̂ k ̂ n. The
output function is

/ . a i v b i . 02^2 . . . <»nYbn

which is one product term in the sum-of-products expres-
sion of eqn. 1. The metal summer to which the inhibit
output is applied, realises the sum of eqn. 1. We have
chosen not to use the constant generator at the PLA
output, since the product of literals formulation for a

174 IEE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987

Table 4: Number of functions realised using the fewest input configurations against the number of columns and
number of input configurations.

Output configurationNumber
of
columns

Number
of
input
configurations

complement or direct inhibit or direct

Input configuration

inhibit only

staircase function step function staircase function step function literal without constants

28
42
36
30
16
6

36
108

70
0
0
0

44
35

4
0
0
0

36
90
38

0
0
0

31
0
0
0
0
0

0
8

20
16
18
10
8
4
2

0
0

38
0
0
0
0
0
0

0
61
72
30

0
0
0
0
0

0
0

50
36

0
0
0
0
0

0
130
0
0
0
0
0
0
0

0
0
91
0
0
0
0

1
2

4 3
4

Total number of functions

Total number of input configurations

Total cost of input configurations

o
 o

 o

o

256

896

3584

0
0
0
0

256

576

12672

0
0
0
0

256

606

2424

0
0
0
0

256

634

13948

0
0
0
4

256

580

4640

multiple-valued function without a constant given in eqn.
1 is common, and thus serves as a basis for comparison
with previous formulations. For the same reason, no con-
stant generator is part of the column driven by input
configurations.

Since each column output is summed on the metal
summer which serves as the PLA output, the PLA real-
ises a sum-of-products involving literals with Sum being
normal addition truncated to 3 when the sum exceeds 3.
As long as there are sufficiently many columns (product
terms), any n-variable 4-valued functions can be realised
[2]. The number of functions realised at the output of
one column is 31, since there are 10 literal functions for
each of 3 nonzero logic levels and the constant function
<0000>.

The advantage of the literal generator over the
staircase-function generator with the inhibit at the
column output is in the additional logic available to the
user of the PLA. With the literal generator, both halves
of the pair of staircase-function generators are included
whether both are needed or not. With the staircase-
function generator, however, only one half of the pair will
be used when only one half is needed. Thus, the latter
PLA makes more efficient use of chip area. This will be
discussed in Section 4.

3.5 Functions realised by PL As with more than one
column

In this section, we analyse the 4-valued unary functions
realised by PLAs with one, two, or more columns, which

are in one of the five configurations discussed above. A
program was written which enumerates the unary func-
tions according to the number of input configurations
and columns required. Starting with functions realised by
a single column, all traditional unary functions realised
with 2 columns were generated, then 3 columns, etc. At
each step, the realisation requiring the least number of
input configurations is retained. The results are shown in
Table 4. The right five columns represent the number of
unary functions realized by the following PLA configu-
rations :

staircase-function generator/complement or direct
step-function generator/complement or direct
staircase-function generator/inhibit or direct
step-function generator/inhibit or direct
literal generator/inhibit always

The top two sections of rows correspond to PLAs with
0 or 1 column and the data here agrees, as it should, with
Tables 1, 2 and 3. It is interesting that the 4 constant
functions <0000>, <1111>, <2222>, and <3333> are
counted in the functions which require one column, since
with the literal generator, there is no constant generator
at the PLA output.

It should be noted that the data represent a mini-
misation of the total number of input units, not columns.
That is, the 8 functions using 3 columns in the minimal
realisations associated with staircase-function generator/
complement or direct can all be realised in such PLAs
using only 2 columns. However, with 3 columns, there is

1EE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987 175

a realisation which requires fewer input units overall than
with any 2-column realisation. With this one exception,
there are no functions for which there is an advantage to
using more columns than the minimum, in any of the
three configurations.

Observation: The number of columns necessary to
realise any unary 4-valued function in a PLA using either
the staircase- or step-function generator and possibly a
complement at the column output is at most 2, while in a
PLA using the literal generator and an inhibit at the
column output is at most 4.

4 Concluding remarks

The next to last row in Table 4 shows the total number
of input configurations needed to realise all 256 4-valued
unary functions. It shows that staircase-function
generator/complement or direct requires significantly
more input configurations, 896, than any of the other
configurations, each requiring about 600 configurations
each. However, considering a cost which reflects chip
area occupied, the staircase-function generator/
complement or direct is very good, ranking 2nd out of 5.

The main results of this paper are summarised in the
last row of Table 4. It shows the total cost (chip area) of
the input configurations required to realise all unary
functions. Each entry is derived by multiplying the
number of required input configurations in the row just
above by the cost of each configuration. In this compari-
son, the staircase-function generator/inhibit or direct
requires the least chip area, with staircase-function
generator/complement or direct second best, consuming
about 50% more chip area. The two combinations using
the step-function generator are extremely costly by com-
parison. As discussed earlier, the step-function generator
is the same as the staircase-function generator except that
an inhibit has been added. From this analysis, it is clear
that the extra circuit complexity of the inhibit does not
increase the number of realised functions sufficiently to
offset the extra chip area.

As discussed earlier, the literal-function generator con-
sists of two copies of the staircase-function generator. We
observed that for some literal functions, one of the two

copies is not needed. From Table 4, it can be seen that it
uses almost twice the chip area of the staircase-function
generator/inhibit or direct, suggesting that there is signifi-
cant waste in the use of the added staircase-function gen-
erator.

The main conclusion we reach is that the staircase-
function generator together with the inhibit at the
column output is significantly better than the other com-
binations. Thus, an important problem is the develop-
ment of an efficient synthesis technique for this PLA
design.

5 Acknowledgment

The authors acknowledge valuable comments by three
referees of this paper. This work was funded by NATO
Grant 423/84.

6 References

1 KERKHOFF, H.G.: 'Theory, design, and applications of digital
charge-coupled devices'. Ph.D. Thesis, Twente University of Tech-
nology, Enschede, The Netherlands, April 1984

2 TIRUMALAI, P., and BUTLER, J.T.: 'On the realization of
multiple-valued logic functions using CCD PLA's'. Proceedings of
the 14th International Symposium on Multiple-Values Logic, Win-
nipeg, Manitoba, Canada, May 1984, pp. 33-42

3 KUO, H.-L., and FANG, K.-Y., 'The multiple-valued programmable
logic array and its application in modular design'. Proceedings of the
15th International Symposium on Multiple-Valued Logic, Kingston,
Ontario, Canada, May 1985, pp. 10-18

4 IMME, M., and PAPACHRISTOU, C.A.: 'Simplification of MVL
functions and implementation via a VLSI array structure', ibid., pp.
242-248

5 SASAO, T.: 'An algorithm to derive the complement of a binary
function with multiple-valued inputs'. IEEE Trans., 1985, C-34, pp.
131-140

6 BENDER, E.A, BUTLER, J.T., and KERKHOFF, H.G.: 'Compar-
ing the SUM with the MAX for use in four-valued PLAY. Pro-
ceedings of the 15th International Symposium on Multiple-Valued
Logic, Kingston, Ontario, Canada, May 1985, pp. 30-35

7 KERKHOFF, H.G., and BUTLER, J.T.: 'Design of a high-radix
programmable logic array using profiled peristaltic charge-coupled
devices'. Proceedings of the 16th International Symposium on
Multiple-Valued Logic, Blacksburg, Virginia, USA, May 1986, pp.
128-136

8 ALLEN, CM., and GIVONE, D.D.: 'A minimization technique for
multiple-valued logic systems', IEEE Trans., 1968, C-17, pp. 182-184

176 IEE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987

